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Climate and atmospheric changes are impacting forest function and
structure worldwide, but their effects on tropical forest diversity are
unclear. Nowhere is the scientific challenge greater than in the Andes and

the Amazon, which together include the world’s most diverse forests. Here,
using 406 permanent plots spanning four decades of intact lowland and
montane forest dynamics, we test for long-term change in species richness
and assess the influence of climate and other variables. We show that, at a
continental scale, species richness appears stable, but this masks substantial
regional variation. Species richness increased in Northern Andean and
Western Amazon plots, yet declined in the Central Andes, Guyana Shield and
Central-Eastern Amazon. Overall, warmer, drier and more seasonal forests
lost species, while those at higher elevations, in less fragmented areas and
with faster rates of tree turnover experienced increases. Region-specific
drivers, particularly precipitation seasonality and demographic factors,
modulated these trends. The results highlight the diverse ways in which
Amazon-Andes forests are changing and underscore the critical need to
preserve large-scale ecosystem integrity to maintain local tree diversity. By
doingso, Northern Andean forests in particular could serve as animportant
refuge for species increasingly displaced by climate change.

The Andes and the Amazon are crucial for carbon storage, biodiversity
conservation and climate regulation' . However, climate change and
land-use change are threatening the stability of these ecosystems and
theservices they provide®'°. Over recent decades, temperatures have
increased in this region, precipitation patterns have become more
extreme and variable, deforestation has expanded and forest fires
have become more frequent” ", Under these increasingly stressful
conditions, plant species have two feasible short-term responses to sur-
vive: (1) migrate—shift their distribution range in response to changing
environmental conditions, or (2) acclimate—utilize their physiological
tolerance to maintain function under the new conditions. If species do
not manage to migrate or acclimate, their populations will decrease
and eventually they may go extinct™.

The response of plant species to climate change could lead to
changesinforeststructure, composition, diversity and speciesrichness

atthelocalscale” ™. The Andes and other tropical mountains are under-
going a process of thermophilization, where higher-elevation forests
areincorporating new lower-elevation species that expand their ranges
upslope, and current low-elevation species are increasing in relative
abundance® . However, lower-elevation forests face the possibility
ofbioticattrition (anetloss of species), as thereis nospecies pool from
even hotter areas able to migrate and fill the new thermal niches* .
While the wet tropics have been suggested to have the highest rates of
plantextinction, based onliterature reviews” and model predictions®,
we do not know whether this translates into consistent losses of local
richness within the different regions in the Andes-Amazon area.
Despite widespread threats across the Andes-Amazon area, cli-
mate change and other large-scale disturbances are not distributed
evenly across space””?’. Moreover, geographical features—such as
increased topographical variation, which may provide a potential
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Table 1| Predictors included in the study, along with their acronyms, units, time frame used for calculation, brief description
and hypothesized relationship with species richness change

Predictor Units Timeframe Description Hypotheses
Maximum °C 1979tofinal TerraClimate. Mean annual maximum Negative relationship. Across temperature gradients,
temperature census temperature (highest maximum monthly warmer forests may be more affected by biotic attrition,
temperature of the year). as they are closer to the trees’ physiological limits, while
cooler forests can incorporate lower-elevation species®.
. Annual mm 1979tofinal TerraClimate. Mean annual cumulative Positive relationship. Drier forests may be more affected by
Baseline L A o " : - .
. precipitation census precipitation. biotic attrition, as they are closer to the trees’ physiological
climate L . .
limits and they could present more hydraulic stress, which
should be more challenging for new species to grow’.
Precipitation CcVv 1979tofinal TerraClimate. Mean annual standard Negative relationship. Higher precipitation seasonality
seasonality census deviation of monthly precipitation as a is related to lower tree diversity, so we expect highly
percentage of the mean. seasonal forests to be more prone to species loss®*’"%.
Temperature °Cyr™ 1979tofinal TerraClimate. Annual change in the mean Negative relationship. Faster-warming forests may be
change census annual maximum temperature. Calculated losing more species than slower-warming or cooling
as the linear model regression coefficient. forests owing to the challenges of dealing with a
temperature higher than their optimum?’®.
Precipitation mmyr”" 1979tofinal TerraClimate. Annual change in the mean Positive relationship. Forests becoming drier are expected
. change census annual precipitation. Calculated as the linear  to present harder conditions for species and even prompt
Climate . - L i
model regression coefficient. some local extinctions. Forests becoming wetter could
change . R :
relieve the hydraulic stress of some species and encourage
recruitment®#°,
Precipitation CVyr' 1979tofinal TerraClimate. Annual change in precipitation  Negative relationship. In line with precipitation seasonality,
seasonality census seasonality. Calculated as the linear model more extreme seasonality may be related to a decline
change regression coefficient. in species richness, while more stable precipitation
seasonality would maintain species richness®*'.
Landscape % 2015 GFCC Tree Cover Multi-Year Global 30-m Positive relationship. Forests surrounded by more
integrity raster, aggregated to 120-m pixels in GEE. vegetated areas should have a larger pool of species within
Mean percentage tree-covered pixel area in dispersal distance to potentially recruit®*2,
Landscape 2015 in a 50-km radius from each plot.
context Elevation ma.s.L. SRTM 90-m resolution. Positive relationship. Lower-elevation species could
recruit at higher elevations to maintain their optimum
temperature requirements. Together with some extinction
lag, this could increase richness in the higher elevations*.
Stem %yr Census Difference in the number of individuals Positive relationship. A higher number of individuals
abundance interval between final and initial census divided increases the likelihood of encountering new species,
change by the initial number of individuals and thereby raising local species richness®.
multiplied by 100, then divided by the time
between censuses.
Structure  wMortality rate % yr! Census Logarithm of initial stems minus logarithm Mixed relationship. Faster mortality rates indicate newly
interval of surviving stems divided by time between opened areas that are susceptible to colonization. When
census and multiplied by 100 and by the coupled with rapid recruitment, this can increase the
census interval to the 0.8 power. Sheil and likelihood of encountering new species. Meanwhile, higher
May 19967? equation and Lewis et al. 20047 mortality reduces overall tree abundance, which can
correction. decrease species richness®.
Identification % Census Change in the percentage of individuals per  Positive relationship. A greater number of identified
effort change interval plot (from final to initial) that were identified individuals increases the likelihood of recording new
Sampling to species level. species, thereby enhancing local richness.
Time frame years Census Years between initial and final census. No relationship.
interval

advantage for species persistence by offering more suitable environ-
mental conditions—are also unevenly distributed**".

Atthelocalscale, stressors, such as increasing temperatures and
declining rainfall, have been related to mortality-driven composi-
tional shifts, particularly in steep elevational gradients®-*°*>**, Base-
line temperature and precipitation regimes have also been shown to
relate to the probability of plant species suffering thermal or drought
damage®**. Fragmented areas are also vulnerable to diversity losses,
while increasing fire frequency reduces regeneration and species
richness"***". However, although several mechanisms have been shown
to drive changes in (neo)tropical forest diversity, most studies so far
have been limited to local or regional scales and/or lack long-term
assessments of tree richness and diversity at consistently monitored
sites. Indeed, long-term compositional changes have often been esti-
mated using modelling approaches and have rarely been addressed
using field data (but see refs. 33,38).

Here we use 406 long-term floristic plots, measured for different
time periods since 1971 across 10 countries in South America to esti-
mate the magnitude and direction of tree richness change through
time and to identify their drivers. Across this vast space, ranging from
-17to 8.5 latitudinal degrees and -80 to —47 longitudinal degrees, we
explore the change in richness through time for the combined area
and independently for each of six predefined regions (based on their
geomorphological and biogeographical history and contemporane-
ous geoecological features), as we hypothesize that different regions
are responding in different ways, forced by different drivers. Using
consistent methods to identify the spatial distribution of diversity
change and the factorsthat contributetoitatalargerscaleis crucialto
understanding the current status of the Amazon and Andean forests,
predicting future patterns and informing conservation efforts. With
thiscomprehensive plot compilationand aset of climatic and structural
variables, we intend to answer the following questions. First, using the
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Fig.1|Richness change at samplinglocation. a,b, Relationship between plot
location and richness change per plot: longitude in decimal degrees (a) and
absolute latitude in decimal degrees (b). Each point represents a plot, and its
colour corresponds to the region. The solid line represents statistically significant
(P<0.001) linear regression. The shaded ribbon represents the 95% CI.

complete dataset, we ask: (1) How is tree species richness changing
acrossthe Andes-Amazon area? Isthere an overall decline? and (2) How
are changes in richness related to baseline climate, climate change,
landscape context and forest structure?

We predict an overall stability of richness, with local increases and
declines balancing each other out. However, we expect the change in
richness to be associated with several large-scale variables. In particu-
lar, we expect amore pronounced decrease inrichness in warmer, drier
forests at lower elevations given the thermophilization trend where
species are ‘migrating’ towards higher elevations that usually tend to
be colder and wetter. Similarly, we predict arichness declinein forests
thatarebecomingwarmer or drier as dealing with this climate becomes
physiologically more challenging. We also expect adecrease in species
richnessinforests with high fragmentation due to the reduced source
of colonizers and habitat connectivity. Asummary of all the predictors
tested and our hypothesized relationships with species richness change
ispresentedin Table 1.

Then, analysing each of six predefined regions separately, we ask:
(3) Does the change in treerichness exhibit the same trend in the differ-
entregions of the Andes-Amazon area? and (4) Which of the selected
predictors explain the change in species richness for each region?

We expect to find a longitudinal gradient in diversity change
across the six Andes-Amazon regions driven by the most pressing
stressors in each region. In particular, we hypothesize (a) anincrease
inrichnessin the Andes as a consequence of thermophilization and a
decrease of richness inthe Amazon, particularlyin the drierand warmer
Central-Easternregions (Guyana Shield, Central-Eastern Amazon and
Southern Amazon), due to biotic attrition; (b) temperature will thus
be a crucial factor in the Andean trends, while precipitation could be
more important in the Amazon; and (c) landscape integrity will have
animportantroleinthe more degraded Southern and Central-Eastern
Amazonregions

Results
No overall change in the richness of the Andes-Amazon area
Half of our plots (203) declined inrichness, and 146 increased. Richness
change varied widely across plots (range -1.95% to +3.3% per year) but
had no consistent direction at the Andes-Amazon scale (bootstrapped
mean richness change 0.036, mean confidence interval (CI) —0.09 to
0.16, mean ¢ statistic 0.579, mean Pvalue 0.56, degrees of freedom179)
(Supplementary Fig.1).

We found a negative relationship between richness change and
longitude (slope -2.39, adjusted R*=0.047, P < 0.001). At —64.5°, which

coincides broadly with the transition between the Eastern and West-
ern Amazon, the change in richness shifts from positive (West) to
negative (East) values (Fig. 1). There was no significant relationship
with latitude.

Richness change drivers at the Andes-Amazon scale
Inthebivariate regressions with the complete dataset, we found that maxi-
mum temperature, precipitationseasonality and precipitation seasonal-
ity change had significant negative relationships with richness change
(Fig. 2 and Supplementary Table 1; see predictor description in Table 1).
Temperature change exhibited a hump-shaped relationship with rich-
ness, decreasing slightly where temperatures cooled and more markedly
where warming was faster. Annual precipitation, stem abundance change,
landscapeintegrity, elevationandidentification effort change had positive
significantrelationships (Fig.2). Thebootstrapped regressions corrected
forspatialbiasin plotlocation supported the representativity of the overall
trendsfound asslope direction and significance coincided for most of the
variables (Supplementary Table2and SupplementaryFig. 2). Theregres-
sionwith annual precipitation, although always positive, was on average
notsignificantinthebias-corrected analysis, and the one with landscape
integrity was typically positive but not significant, probably because of the
confounding effect of decreasing tree cover with elevationin the Andes.

When predicting richness change, we observed significant
interactions between precipitation seasonality and its change, pre-
cipitation seasonality and annual precipitation, and annual precipita-
tion and precipitation seasonality change (Extended Data Fig. 1 and
Supplementary Table 3). Species richness declined with increasing
precipitation seasonality, but this decline was steeper for less seasonal
forests. Speciesrichnessinless seasonal forestsincreased with annual
precipitation. We found marginal support for aninteraction between
thetemperature variables, suggesting that warmer forests experienc-
ing further warming lost more species, whereas cooler forests even
showed aslightincrease inrichness.

Andes-Amazon regions experienced different trends of
richness change

Richness change was directionalin five of the six regions (Fig. 3). Species
richness significantly increased in the Northern Andes and Western
Amazon, while the Central Andes, Central-Eastern Amazon and Guyana
Shield experienced significant declines. Although the Southern Ama-
zon did not show a significant trend, the mean change was negative
andincluded some of the most extreme negative values. The direction
of these changes coincided across the other diversity indices tested
(Supplementary Table 4), although the significance of the change was
more variable because differentindices reflect slightly different aspects
of diversity change (Supplementary Note 1).

Regional trends have different explanatory predictors

We used amultigroup piecewise structural equation model (SEM) analy-
sis to identify the relationship between the predictor variables and
therichness change directly and indirectly. This SEM (Fig. 4) showed a
good fit to the data (Fisher’s C=4.232, P=0.375). The individual R*for
the component models were 0.18 (mortality), 0.27 (stem abundance
change) and 0.30 (species richness change). Complete model results
are presented in Supplementary Table 5.

Many of the relationships between climate and environmen-
tal variables with stem abundance change and mortality rate were
constrained (indicating a similar effect) across regions (Fig. 4 and
Supplementary Fig. 3). For stem abundance change, five out of eight
variables were constrained, with two of these being significant; for
mortality, four out of the eight variables were constrained, with two
of them significant. For richness change, 5 out of 11 variables were
constrained, with 4 being significant.

Regarding the intermediate factors mediating indirect effects,
mortality rate had asignificant negative effect onrichnessin the Central
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triangles are regional means (n = 6). Solid lines represent statistically significant

regressions (P < 0.05). Shaded ribbons around lines represent 95% CI. For
extended statistical results, see Supplementary Table 1.

Andes, and stem abundance change had a significant positive effect
on richness change in all regions. We computed the indirect effects
that the predictors had on richness change mediated by the struc-
tural variables when each path coefficient was significant (Fig. 5 and
Supplementary Tables 6 and 7).

Maximum temperature had a total negative effect on richness
across regions, while precipitation had a general positive effect.
Precipitation seasonality had a strong negative effect in the Andes
but positive in the Southern Amazon. Temperature change had a
very small negative effectin the Central Andes, Western Amazon and
Central-Eastern Amazon. Precipitation change had a large positive
effect in the Guyana Shield. Precipitation seasonality change was
variable, having a large negative effect in the Northern Andes and
Southern Amazon but a positive effect in the Central Andes. Stem
abundance change had a positive effectin all regions, while mortality
had anegative effect. Landscape integrity had a strong positive effect
inthe Southern Amazon, weaker positive effects in other regionsand
anegative effectinthe Central Andes. Changeinidentification effort
had apositive direct effectinall regions except the Southern Amazon,
while the time frame had very small positive effects in five regions and
anegative effectin oneregion.

Discussion

No apparent overall changein tree richness of the Andes-
Amazonarea

We found no overall trend in species richness change across 406
forest-dynamics plots distributed across the tropical Andes and the
Amazon. However, this large-scale result masks important regional
variations, withrichnessincreasingin the Northern Andes and Western
Amazon, while decreasingin the Central Andes, Central-Eastern Ama-
zon and Guyana Shield. This masking or obscuringissue hasbeenraised
for global estimations of diversity change based on local trends, and
some even question the relevance of these large-scale averages® . In
any case, the absence of asignificant overall trend in richness change
may also indicate a temporary disequilibrium between current envi-
ronmental conditions and large-scale vegetation responses*’, which
should not be misinterpreted as resilience. Lag effects could occur on
theleadingedge, where trees slowly colonize newly suitable habitats,
delaying potential richness gains. Alternatively, lags at the trailing edge
could indicate a temporary persistence of species, artificially inflat-
ing current richness estimates*’. Lowland areas of the Amazonia are
expected to experience greater lags due to the long migration distances
required to remain at equilibrium with their optimal conditions*. By
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GU, Guyana Shield; CEA, Central-Eastern Amazon; SA, Southern Amazon).
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b, Richness change (% yr™) per region expressed as proportional change in
relation to the initial census. Tick marks represent individual plots. The shaded
arearepresents the density distribution of the plots. Shade colour indicates a
significant difference from zero using a two-sided ¢-test (grey, P < 0.05; white,
P>0.05;NA, P<0.0001;CA, P<0.0001; WA, P=0.003; GU, P=0.004; CEA,
P<0.0001;SA, P=0.29). For extended results, see Supplementary Table 4.

contrast, mountain regions are thought to have an extinction debt,
allowing temporary species accumulation***.

Across the Amazon, current tree diversity patterns are largely
shaped by seasonality, with higher diversity found in the wet, aseasonal
forests of the Western Amazon and lower diversity in the drier, seasonal
forests of the Easternregions*. Our findings onspecies richness change
align with this longitudinal gradient, revealing negative trends in the
Eastern regions and positive trends in the Western regions. We first
discuss these large-scale patterns, followed by the regional findings
that help explain these trends.

Climate stress versus structural resilience
Hotter, drier and more seasonal forests and those getting warmer and
more seasonal arelosing species, but forests with more trees and higher
landscapeintegrity are gaining them. Over the past 40 years, more than
90% of our plots (368/406) have experienced warming with ameanrate
0f0.028 + 0.018 °C per year (321/406 during the individual monitoring
periods). Faster-warming forests in the Central-Eastern and Southern
Amazon (0.05 + 0.02 °C per year) are losing species at a higher rate than
forests experiencing more moderate warming. In addition, forests in
warmer areas within the Andes-Amazon area are also losing more spe-
cies (Fig. 2). This pattern reflects the contrasting conditions and biotic
responses of the Andes and Amazon forests and, supported by the higher
rate of species accumulation with increasing elevation (Fig. 2), provides
further evidence for thermophilization in the region®%*, This phe-
nomenoniis also supported by the temperature interaction, where the
impact ofheatingin driving species richness loss depends onthe baseline
temperature, with hotter forests being more sensitive to a given rate
of heating. Nevertheless, most of the forests in the Central Andes that
experienced slight cooling (50/76) also showed negative trendsin species
richness (29/50), probably influenced by adeclinein precipitationand an
increase in seasonality in all of these plots (29/29). This trend indicates
that precipitation change modulates richness responses to temperature.
Rainfall declined in 39% of plots, but its influence was minor rela-
tive to that of precipitation seasonality, which increased in 88% of the

plots. Forests that are more seasonal—and especially those becoming
more seasonal—showed declines in species richness”, with the strong-
est negative effects in currently less seasonal or wetter forests (that
is, higher annual precipitation; Extended Data Fig. 1). These results
agreed with findings from the Andean mountain tops, where seasonal-
ity across the latitudinal gradientis strongly linked to richness changes,
with more aseasonal peaks near the Equator showing richness gains’®.
While we did not find alatitudinal trend across the study area (Fig. 1),
we observed differences between the Northern and Central Andes,
which we discuss in detail below.

The more individuals recorded in a census, the larger the gain in
the number of species (Fig. 2), as expected because more species from
theregional pool have achance torecruit. This patternextends beyond
individual plots, as forestsin less fragmented landscapes (higher land-
scapeintegrity), surrounded by more contiguous forest, are more likely
toshowincreasesinspeciesrichness. By contrast, forests thatbecome
moreisolated from surrounding fragments tend to experience adecline
in species richness®**5%,

Diverse regional patterns of richness change and diverse drivers
The Western Amazon and Northern Andes are gaining species, while the
Central Andes, Guyana Shield and Central-Eastern Amazon are experi-
encingspeciesloss (Fig.3). According to the SEM, the processes driving
changesintree density and mortality rates are similar across the Andes-
Amazon area (Fig. 4). Generally, mortality rates rose in more seasonal
and fragmented forests, while stem abundance declined in warming
forestsandin forests experiencing higher mortality rates. Therelation-
ship between richness change and environmental variables revealed
many region-specific drivers, with some variables having opposite
effects in different regions, highlighting the context-dependent pro-
cesses in our vast study area.

The relationship between stem abundance change and richness
change was positive acrossregions. Thismeans thatagreater declinein
the number ofindividualsina plot (in proportion to the initial number)
was associated with a more negative change in species richness, and
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change as the final response variable, and stem abundance change and mortality
rate as intermediate response variables that may also influence richness change.
Both panels are part of the same SEM, but for easier interpretation, they show
general and region-specific relationships separately. a, Significant relationships
constrained across the study area, with arrowhead colour indicating negative or
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(marked by asterisk) is constrained to 0. The effect of mortality rate on stem
abundance change (marked by hash sign) is positive and significant across
regions but not constrained. Non-significant constrained relationships are
showningrey. b, Significant relationships in specific regions, with arrow colour
indicating the region, width representing the standardized effect size (in mm x 2)
and stroke style denoting the effect sign (solid, positive; dashed, negative). For
standardized effect sizes of all variables, see Supplementary Table 5.

vice versa. Changes in individual abundance are crucial for enabling
compositional change, as more recruits increase the likelihood of
detecting new species from the local pool*°. However, the entry of
new species does not necessarily imply a shift in composition out-
side the existing regional pool, and species loss could reflect local
extinctions or shifts within the same pool. Further analysis is needed
todetermine whether these species are new or are part of the regional
pool.Allregions showed a negative trend in stem abundance, with the
Eastern Amazon (Guyana Shield, Central-Eastern and Southern Ama-
zon) experiencing sharper declines than the Western Amazon and the
Andes, which showed higher variability. Thisis contrary to theresults
of previous research showing an increase in stem density across 50
Amazonian plots from 1979 to 2002°. Although this discrepancy may

simply reflect the differing sample sizes and geographical extents of
the studies, it could also indicate a recent change in the stem density
trend driven by rising temperatures.

Mortality directly affected only the Central Andes, withiits effects
on other regions mediated through stem abundance change. Thus,
the hypothesized disturbance effect of mortality in promoting the
colonization of new species is probably limited to the Central Andes.

Acrossregions, warmer and drier areas are linked to lower rates of
richness change. Regional temperature gradients, particularly eleva-
tion gradients in the Andes, play a crucial role in richness change. We
foundanincreaseinrichnessinthe Northern Andes, which agrees with
the reported compositional change caused by the thermophilization
processin the area’ %" and with research showing a warming-related
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For extended results, including specific Pvalues, see Supplementary Tables 5
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Supplementary Table 7.

increase in mountain-top diversity****. The encroachment of
lower-elevation, warm-adapted species, which would initially be rare
in the community, would lead to a potentially temporary increase in
the number of species supported by the extinction lag of cold-adapted
species that cannot tolerate the new conditions and will eventually
becomelocally extinct®>**, We expected that both Andean regions would
share the same pattern; however, the Central Andes showed a declinein
richness. Our results suggest that the faster-warming Northern Andes
region™ could be more suitable for range shifts than the more moder-
ate—and even cooling—Central Andes (Extended Data Fig.2). The most
important factor determining the richness change in the Northern
and Central Andean regions was change in precipitation seasonality,
having a negative effect in the Northern Andes and a positive effectin
the Central Andes. Across the Andes, precipitation and its seasonality
are highly variable, being affected by local orography, orientation and
cloud cover™; however, on average, the Central Andes are drier and
more seasonal than the Northern Andes, and they are also becom-
ing drier and more seasonal at a faster rate (Extended Data Fig. 2 and
Supplementary Table 8). We hypothesize that migrating lower-elevation
species, particularly those distributed in the Western Amazon, are more
likely to succeed expanding into higher elevations of the wetter and
less seasonal Northern Andes than in the Central Andes. The Central
Andes probably pose a greater barrier from water-related physiologi-
calstress (particularly when compared with the Western Amazon) than
the Northern Andes. Furthermore, the negative relationship between
richness and landscape integrity inthe Central Andes probably results
from the confounding effect of decreasing tree cover with elevation.
The Westernand Central-Eastern Amazon presented a very similar
breakdown of driver effects. In both regions, changes in stem abun-
dance were the primary ecological drivers, with minor indirect effects
from climate variables, largely mediated by the change in stem abun-
dance. In these regions, forests that are warmer, drier or becoming
warmer or drier exhibited declining richness, as these conditions
reduce thenumber ofindividuals. The Central-Eastern Amazonis drier

and is warming faster than the Western Amazon, which could explain
theoverallrichness decrease inthe Central-Eastern Amazon as opposed
to theincrease in the wetter Western Amazon.

In the Southern Amazon, where there was no significant trend in
richness change, and in the Guyana Shield, which showed a negative
trend, precipitation and its seasonality played predominant roles.
In the Guyana Shield, dry forests—and particularly those becoming
drier—experienced the greatest species losses. In the Southern Ama-
zon, which is highly seasonal, there is evidence that forests that were
more seasonal at baseline tended to gain species; however, increases
in precipitation seasonality were associated with richness declines.
Nevertheless, in the Southern Amazon (the area with some of the most
fragmented forests), landscape integrity exerted the strongest direct
effect on richness change: forests embedded within larger, contigu-
ous forested areas tended to gain species, whereas more fragmented
forests tended to lose them.

Landscape integrity also had a negative relationship with mortal-
ity rate across all regions, indicating that higher landscape integrity
supports tree survival, thereby increasing tree abundance, which, in
turn, positively impacts richness. This agrees with previous findings
on the damaging effects of deforestation and/or degradation in sur-
rounding forests, underscoring the importance of preventing forest
fragmentation to supportbiodiversity conservation®. It also highlights
the conservation priority of the Western Amazon-Northern Andes cor-
ridor, which appears to be the most feasible pathway for range shifts
that could support species persistence.

This study provides acomprehensive assessment of tree richness
change in the Andes-Amazon forests using long-term field data. How-
ever, we acknowledge that we are working in one of the most diverse
and dynamic areas of the planet*®, and, as such, there are limitations
to our analyses. First, the dataset lacks a historical baseline, so initial
conditions may be influenced by uncertain processes®. To minimize
bias, we used strict plot selection criteria, excluding plots with any sign
of fire orlarge disturbances and directly including identification effort
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change and time between censuses as predictors in our analyses. The
change in identification effort positively influenced richness change
across regions: as more individuals are identified, we encounter more
species. Monitoring time had only a small effect on species richness
change, where shorterintervals capture more noise relative to the signal
thanlonger intervals.

Second, climatic and environmental data extracted from global
databases add uncertainty, especially in topographically complex
areaslikethe Andes. Ataneven finerscale, itisimpossible to know the
real climate experienced on the forest floor by each individual tree;
further investment in microclimate monitoring in these structurally
complex forests is crucial to improve our understanding of climate
change effects. Third, we are including only trees with a diameter at
breast height (DBH) greater than 10 cmand areignoring the potential
contribution of smaller size classes to changes in diversity. Finally,
there are multiple factors not accounted for in the study that can have
important roles in diversity trends. For example, it was beyond the
scope of this study to evaluate the roles of past forest history, includ-
ing Indigenous management, in current richness trends, nor did we
evaluate the potential role of biotic pressures (for example, herbivory
and pathogens), nor that of conservation efforts and compensation
mechanisms, including carbon and biodiversity benefits. Further
research should address more complex compositional questions, such
asevaluating the taxonomic and functional identities of species being
lost or recruited, and whether thisindicates that the Andes-Amazon
is undergoing taxonomic homogenization, functional homogeniza-
tionor both.

In conclusion, across the study area, hot, dry and seasonal forests
and those becoming warmer and more seasonal are losing species,
while forests with higher tree density and higher landscape integrity
are gaining them. Our large-scale findings emphasize the critical role
of temperature and temperature change in shaping tree richness in
the Andes-Amazon area. However, at the regional level, precipitation
anditsshiftsin distribution and annualamounts play moreimportant
and region-specific roles, outweighing the influence of temperature®’.

This study highlights the unevenimpact of changing environmen-
tal conditions on tree diversity across different tropical forests, as well
asthevaried importance of climate and environmental variables across
the different regions and scales. Our results underscore the key role
of the Northern Andes as a refuge for tree species facing increasingly
unsuitable climatic conditions in the Amazon. Finally, our findings
highlight the tight relationship between preserving tree abundance
and preserving diversity, emphasizing the enormous threat posed by
land-use change, whichindiscriminately reduces both tree abundance
andregional species diversity.

Methods

Forest monitoring plots

We combined permanent plot data from ForestPlots.net>® (https://
forestnet.com/) and from the Madidi project (https://madidiproject.
weebly.com). Plot establishment and resurveys were performed by
well-trained field teamsthat followed a detailed protocol thatincluded
geolocating plot boundaries, marking subcorners with permanent
polyvinyl chloride tubes, taking tree subplot and coordinate data,
tagging trees with numbered aluminium tags, and noting and painting
the point of measurement. Post-field quality control was carried out
by database managers and the field team leader. We selected all plots
within the study area (Andean or Amazonian country in areas lower
than 4,000 m above sea level (a.s.l.)) that had been censused at least
twice. We did not include plots located in the Chocé and the Northern
Venezuela regions because of insufficient sample sizes to represent
these areas. To avoid the confounding effects of successional trends on
diversity change, weincluded only plotsinforests that were undisturbed
or had experienced disturbance at least 50 years prior (identified as
equivalent to long-term successional forest). For the same reason, we

excluded plots that had been recorded on ForestPlots.net as swamp
or seasonally flooded forests or as having a history of fire or of large
disturbances. We also excluded plots that had been flagged for having
taxonomicidentificationissues.

We obtained curated datasets for each census and plot. For each
plot, we selected the first and the last census. Hereafter, we refer to
these two censuses as ‘initial’and ‘final’. We ensured that plot areaand
location exactly matched on both censuses and that the plot sampling
strategy was standardized across time. For instance, we excluded palms
when they were not measured in every census.

Tostandardize methodologies, we removed from the dataset sub-
plots (delimited sections withina plot) in which the protocol required a
minimum tree DBH greater than10 cm for inclusion. We also removed
allindividuals smaller than10 cm DBH and those belonging to the fami-
lies Cyclanthaceae and Araceae. Species taxonomicidentification was
carried outinthe field and in the herbaria where reference collections
with vouchers are deposited. Any change in anindividual’'s identifica-
tion was applied across all censuses. To minimize the impact of the
change in identification effort (the proportion of individuals identi-
fied to species level) between censuses, we restricted our analyses to
plots that (1) had more than 50% of the tree individuals identified to
specieslevelintheinitial census, (2) had a differenceinthe proportion
ofidentified individuals between first and last census smaller than10%
and (3) had atleast 50% of the recruits in the final census identified to
species (when there were more than 20 recruits). In some instances,
this meant using the next-to-last census within the plot as the final
census. The change in the percentage of individuals identified to spe-
cieslevelisusedinthe modelasapredictor toaccount for the potential
confounding effect of this factor.

We used the taxonomic name resolution service (TNRS) tool*
(https://tnrs.biendata.org) and R package®’ to standardize species
names. We manually verified matches with an overall score <0.9, and
‘unclear’and ‘not found’ matches. We looked for potential explanations
suchasspellingerrorsinthe Tropicos (https://www.tropicos.org) and
WFO (https://wfoplantlist.org/plant-list) lists, and we either manually
modified the accepted name for these species or used only their genus
ID if there was no clear option. As the treatment of morphospecies
was not curated or standardized across the dataset, we converted any
morphospecies codes into ‘Genusindet’ format to group morphospe-
ciesinto genera across the dataset. See the ‘Unidentified species and
morphospecies’ section for an overview of the process of integrating
morphospecies into the analyses.

Giventhatthe plotsize varied widely, we grouped plots that were
less than 0.5 hainareaif they had other plots withina 7-kmradius with
no indication of large differences (that is, similar elevation, forest
type, soil classification and so on). For quantitative metadata values,
such as the time between censuses, we used the mean. We will refer to
these plot groupings as ‘plots’, given that they are treated as a single
unit. We also reduced the size of our biggest plots (plot areas of 25 and
9 ha) by selecting two 1-ha subplots on opposite corners and treating
them independently. We then eliminated plots that had intervals of
less than 4 years between the two selected censuses, because we con-
sidered this time elapsed to be too short to provide mid-to-long-term
diversity change information. The time elapsed between the initial and
final censuses was used in the model as a predictor to account for its
potential confounding effect.

Finally, after preliminary exploration of plot distributions, we
removed plots with ten or fewer species in either the initial or final
census, as adding or removing even a single species could produce
extreme percentage changes (+10%).

Aftertheselectionprocess, our dataset compiled information from
406 plots (or grouped plots) covering ~420 ha (range 0.25-3 ha, mean
plotsize1.04 + 0.26 ha) with acumulative monitoring time of 4,847 years
(range 4.01-44.2, mean 11.94 + 8.01 years). The earliest census dates
were from 1971, and the latest were from 2021 (Supplementary Fig. 4).
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Regions

We divided the study areainto six regions roughly following previous
studies® **. The division between the Northern and Central Andes was
drawnat the border between Peru and Ecuador®*. Supplementary Fig. 5
shows the relative floristic similarity of our plots and regions.

Richness change

We calculated species richness as the number of fully identified spe-
ciesin each plot and census (SP). We calculated the change in species
richness (% yr™) asrichness change = (((SPiicia = SPfinat)/SPinitiar) X 100)/
time; where SP,;;.; and SPg,,, are the richness in the initial and final
censuses, respectively, and time is the time interval between the
initial and final censuses (in years). Palms (family Arecaceae) were
included in the analyses (when included in both the initial and final
censuses) as their exclusion did not have a significant effect on the
results (Supplementary Fig. 6).

Totest whether there was asignificant change inrichness through
time, we used two-sided ¢-test analyses on richness change both for
each of the regions independently and for the combined database.
Given that the number of plots was unevenly distributed among the
regions, to avoid sampling bias in the combined dataset analysis, we
randomly sampled 30 plots per region and carried out atwo-sided ¢-test
with this subset. We repeated this process 1,000 times and obtained
the averages of the t-test means and Pvalues.

To assess potential linearity issues in the relationship between
changes in the number of individuals and species richness, we calcu-
lated the change in species richness after rarefying both the initial and
final censuses to the minimum number of individuals observed in either
census (that is, whichever is lower) (package vegan). The correlation
between the resulting rarefied richness change and the non-rarefied
estimate (r=0.74, P< 0.001) (Supplementary Fig. 7) supports the use
of richness change and stem abundance change as independent vari-
ables (see ‘Predictor variables’ section) in the subsequent analyses.

Additional diversity indices and their change through time for
eachregionwere calculated using the vegan R package® and tested in
the same way as richness change (Supplementary Note 1).

Unidentified species and morphospecies. Despite the considerable
identification efforts by all research groups involved in this project,
many tree individuals remain unidentified (Indet indet), identified
only to the genus level (for example, Ocotea indet) or classified as
morphospecies (for example, Ocotea spl1, Ocotea sp2 and soon). These
morphospecies codes were maintained through the multiple censuses
andretroactively changed to afull species namein the databaseif one
was given; however, the morphospecies criteria were not standardized
across plots, nor were they curated. Because there is no obvious way to
address these issues, we decided to (1) apply the restrictive selection
criteria in terms of identification effort explained above, (2) exclude
the unidentified individuals from the dataset, (4) use the genus-level
information for the morphospecies (as their classificationis not stand-
ardized across the dataset) and (4) exclude individualsidentified only
tothegenuslevel fromthe species-level analyses. Consequently, some
changesinspecies diversity are not captured due to these exclusions;
however, we speculate that such unreported changes are probably
caused by a small number of individuals that recruit or die without
beingidentified across multiple censuses and are unlikely to be domi-
nant members of the community.

To support the use of species-level data despite potential issues
such as mistakes, changes in botanists and changes in the species
concept through time, we calculated the change in genus richness
in the same way as the change in species richness (but using the indi-
vidual’s genus-level information, thus including morphospecies).
Then, we calculated the correlation between the rate of change in
proportional genus and species richness for the combined dataset
(r=0.711) (Supplementary Fig. 8) and for each region independently

(Supplementary Table 9). Given the reasonably high correlation
between the genus- and species-level richness change, we decided to
continue working at the species level. Despite the challenges of work-
ing at this scale, we believe it was important to use this very valuable
informationandtotry toaddressits shortcomingsinstead of reducing
the available information by working at the genus level.

Predictor variables

Baseline climate and climate change. To characterize the average
climate and changing patterns for the Andes-Amazon area, we down-
loaded climatic data from TerraClimate®. We selected this product for
its temporal resolution (monthly from1958 t0 2020), its spatial resolu-
tion (-4 km) and the availability of data for maximum temperature and
annual precipitation. We used the ‘climateR’ package® to download the
TerraClimate monthly data from 1979 to 2020 (inclusive) for each of
our plot locations based on their coordinates. We restricted the time
series to post-1979 because of the higher uncertainty in earlier years.
For each year, we used the monthly data to calculate the maximum
‘maximum temperature’ (°C), the sum of annual precipitation (mm)
and the seasonality of precipitation (using monthly cumulative pre-
cipitation, coefficient of variation (CV) =100 x (standard deviation/
mean))®, For each plot, we used the data between 1979 and the year
of its final census; for example, if the censuses are in 2000 and 2015,
the climate variables provide information from1979 to 2015. This way,
we include any lagged effects of climate on forest dynamics, but we
do notinclude post-census climate events that are not relevant in the
database. For each plot, we estimated the mean values for the relevant
time period to use as the baseline climate. For the same time period per
plot, we performed a linear regression of the variable over time and
used the slope as the annual rate of change. We show the relationship
between the baseline value and the annual change for these variables
(Supplementary Fig. 9). We also calculated the change of each variable
inthe complete 1979-2020 time period for reference.

Landscape context variables. To characterize the geography and
structure of the area where each of the plots is located, we extracted
elevation and landscape integrity from available datasets.

We downloaded and mosaiced the elevation rasters from the SRTM
90-m Digital Elevation Database v.4.1 from CGIAR-CSI*’ and extracted
the elevation values (ma.s.l.) for our plot locations.

We obtained tree cover data from the Global Forest Cover Change
(GFCC) Tree Cover Multi-Year Global 30-m resolution raster’ via
Google Earth Engine”.. Tree cover is expressed as the percentage of
pixel area covered by trees in 2015 (0-100%). We calculated the mean
landscape integrity (%) as the mean tree cover for a radius of 50 km
around each of the plot locations.

Structural variables. We calculated stem abundance change as the
annualrate of proportional change in tree abundance per plot. To cal-
culate this, we first computed the number of live individuals for each
plotand census. To calculate the change in the number of individuals,
we subtracted theinitial from the final number of individuals, divided
by the initial number of individuals, and multiplied by 100. Then, to
calculate the annual rate of change in the proportional number of
individuals, we divided this number by the time elapsed between the
censuses. Due to species accumulation curves, this variable is crucial
indetermining richness change, and, as such, itis treated asan endog-
enous variable in the SEM.

We calculated the mortality rate (% yr™) per plot using the ref. 72
equation together with the ref. 73 interval-length correction:

f = (((In(ng) — In(ny))/£) x 100) x 098,

where n, is the number of stems at the start of the census interval, n
is the number of stems that survive that interval and ¢ is the census
intervallength.
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Sampling variables. To account for a potential change in the identi-
fication effort (for example, a large increase in individuals identified
to genus level only), we calculated the change in the percentage of
individuals per plot that were identified to species level in each plot
(thatis, the changeinthe percentage of identified individuals). We also
included the time frame (years) between the initial and final censuses
as a sampling variable. We show the total change in species through
time per plotin Supplementary Fig.10.

Further descriptors of each variable in each region can be found
in Extended Data Fig. 2 and Supplementary Table 8.

Regressions
To investigate the relationship between the predictors and richness
change separately for the entire Andes-Amazon area, we performed lin-
earregressions between each of the variables specified above (Table 1)
(including census time frame) and the richness change per plot (annual
rate of percentage change in richness) for the combined dataset. We
explored second-order polynomial relationships for all variables and
compared them with linear regressions using analysies of variance.
Only temperature change (%) had abetter fit using polynomial regres-
sion. Mortality rate was log transformed to better fulfil linear model
assumptions. To assess the potential interference of spatial biasin the
dataset, we bootstrapped eachindividual linear regression 100 times
usingrandom sets of 30 plots per region at each time, and we compared
the direction of the slopes and their significance with those obtained
fromthe complete dataset.

Finally, we performed regression analysis with interacting cli-
mate variables and richness change. Inall cases, model residuals were
checked to verify the fulfilment of the linear model assumptions.

SEM

To evaluate the effect of the multiple variables directly on the rich-
ness change and indirectly via their effect on the stem abundance
change and mortality rate, we performed a multigroup piecewise
SEM (piecewiseSEM package)’” where the regions were the groups.
This analysis evaluates the relationships for the combined dataset
and each region separately to constrain coefficients with homogene-
ous effects across regions, leaving the remaining variables to vary
freely. The standardized coefficients referred to as the ‘effects’ of one
variable on another should be interpreted as their relative influence
on the mean of the response. We excluded elevation because of the
high correlation with maximum temperature (Supplementary Fig. 11)
asthe piecewise framework is unable to integrate correlated errorsin
its estimates. The SEM was estimated using three component linear
models whose response variables were (1) mortality rate, (2) stem abun-
dance change and (3) species richness change (Supplementary Fig.12).
We tested for normality, heteroscedasticity and the variable impor-
tance factor of each of the three component models to verify that the
model assumptions were met, and that the inclusion of other variables
with moderate correlation (Supplementary Fig. 11) did not create
multicollinearity issues (variance inflation factor <4). The structure
accounted for both the direct effect of mortality rate on changes in
species richness—reflecting its role as a disturbance force that opens
space and provides light for recruitment—and the indirect effect of
mortality throughits influence on changes instem abundance, acting
asademographicforce. Mortality rate was untransformedin order to
facilitate the interpretation of results. Changes inidentification effort
were included only as a predictor of richness change, but not of stem
abundance change or mortality rate, as there is no causal connection
between these variables—an observation supported by the directed
separation tests (P> 0.05) automatically performed in the piecewise
analyses (Supplementary Table 10). We maintained this relatively sim-
ple partitioning of indirect paths to balance intrinsic uncertainty, the
number of predictor variables, and a reduced sample size per region
when applying the multigroup approach.

To estimate the indirect effects for each predictor and region, we
multiplied the standardized path coefficients for each significant path
(for example, maximum temperature > stemabundance change - rich-
ness change), considering paths viastem abundance change, mortality
rate, and the longer combined path through stem abundance change
and mortality rate. We computed theseindirect effects only when each
path coefficient was significant (P < 0.05). Then, we added the indirect
effects obtained by the three potential pathways and added them to esti-
mate the total indirect effect of each predictor on richness change for
eachregion. The direct effects are the standardized coefficients for the
path between each predictor and the richness change for each region.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets generated and analysed within this study are owned and
managed by many co-authors. Dataare available from the correspond-
ingauthor onreasonable request and with permission of relevant data
owners. For more information, visit https://forestnet.com/and https://
www.missouribotanicalgarden.org/plant-science/plant-science/south-
america/the-madidi-project/. Source dataare provided with this paper.
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Data collection No code or software was use in data collection

Data analysis Data analysis was primarily conducted using the open source programming language R version 4.2.0. The dplyr v.1.1.4, tidyr 1.3.1, data.table
v.1.17.2 and reshape v.0.8.9 packages were used for data preparation. Package TNRS v.0.3.6 was used to standardize species names. Climate
data was accessed via the climateR v.0.3.7 package. The vegan v.2.7.1 package was used to complete the NDMS ordination analysis and the
diversity index calculations. Package piecewiseSEM v.2.1.2was used to conduct the multigroup piecewise structural equation model analyses.
Figures were generated using the packages ggplot2 v.3.5.2, ggpubr v.0.6.0, corrplot v.0.95 and QGIS software version 3.30.0.
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets generated and analysed within this study are owned/managed by many different co-authors. Data are available from the corresponding author on
reasonable request and with permission of relevant data owners. For more information visit www.Forestplots.net
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researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)

Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We assembled a dataset of 406 floristic inventory plots. Based on presence/absence (trees with dbh>10cm) and species level
identifications, we calculate the species richness at two different points in time, and estimate the percent change in richness through
time on each plot. We use that data to evaluate the overall trend in Andes-Amazon richness change and the trends in regional
change (6 regions). We use climatic data (baseline and change), environmental data and structural data to understand the potential
role of these variables in driving the change in richness. We first perform bivariate regressions with the complete dataset. We then
perform a multigroup structural equation model to understand the effect of each factor on the richness change of each region.

Research sample The sample consisted of 406 floristic inventory plots distributed across the Andes and Amazonia, each plot contained individual
diameter measurements and species level identifications for woody plants >10 cm in diameter during two points in time, separated
by at least 4 years. The sample was used to represent changes in species richness across the Andes-Amazon tree flora. Original data
was collected by co-authors and their teams following similar field protocols, with the purpose of long-term forest structure and
compositional monitoring.
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Sampling strategy We used as many inventory plots that fulfilled our criteria as were available across the tropical Andes and Amazon basin.
Because the plots are not distributed evenly across the basin and because plots varied in size we used a spatially-stratified bootstrap
resampling approach to ensure the dataset was sampled as evenly as possible when estimating richness change across the Andes-
Amazon area. This approach is described in detail in the methods text, but briefly consisted of repeatedly sampling a standard
number of plots (30) per region. Then for the regional analysis we used all plots available per region.

Data collection Data was collected by coauthors and their teams. Collections consisted of standardized floristic inventory plots, where all individual
trees had their diameter measured and identified to the highest possible taxonomic resolution. Data was uploaded and curated at
Forestplots.org

Timing and spatial scale  Data was collected by coauthors over from the mid 1980's to present. The minimum time between census is 4 years (range= 4.01 —
44.2; mean=11.94+-8.01 years). The spatial scale is the tropical Andes and the entire Amazon (figure 2).

Data exclusions Allindividual that could not be identified to species level were excluded from all analysis. In the methods we discussed extensively
the steps taken to deal with unidentified individuals and those identified only to genus level (morphospecies).

Reproducibility Data consist of observations and not experiments, therefore it was not relevant to reproduce findings.
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Randomization Samples groups were defined by geographical regions that are explicitly defined. We followed resampling procedures where plots
were randomly selected to performed the Andes-Amazon (entire area) analysis.

Blinding not relevant to this observational study design.

Did the study involve field work? Yes |:| No

Field work, collection and transport

Field conditions Fieldwork work was conducted across the tropical Andes and the Amazonian rainforest during different periods of time and
therefore different climatic conditions. A description of the climatic variables at each region is provided on the S|

Location Observational data collected across the tropical Andes and the Amazon in South America, ranging from -17 to 8.5 latitudinal degrees
and -80 to -47 longitudinal degrees,

Access & import/export  For this project no exportation was required

Disturbance No disturbance was caused

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Describe-any-authentication-procedures foreach seed stock-used-ornovel- genotype-generated—Describe-any-experiments-tised-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

>
Q)
)
=
=
(D
o}
]
i
o
=
—
D)
°
]
=
>
@
(92)
C
3
3
Q
2
<




	Tree diversity is changing across tropical Andean and Amazonian forests in response to global change

	Results

	No overall change in the richness of the Andes–Amazon area

	Richness change drivers at the Andes–Amazon scale

	Andes–Amazon regions experienced different trends of richness change

	Regional trends have different explanatory predictors


	Discussion

	No apparent overall change in tree richness of the Andes–Amazon area

	Climate stress versus structural resilience

	Diverse regional patterns of richness change and diverse drivers


	Methods

	Forest monitoring plots

	Regions

	Richness change

	Unidentified species and morphospecies

	Predictor variables

	Baseline climate and climate change
	Landscape context variables
	Structural variables
	Sampling variables

	Regressions

	SEM

	Reporting summary


	Acknowledgements

	Fig. 1 Richness change at sampling location.
	Fig. 2 Richness change and predictors relationships across the Andes and Amazon.
	Fig. 3 Forest plot and regional changes in richness.
	Fig. 4 Results from the multigroup SEM analysis.
	Fig. 5 Standardized effect of each predictor on richness change from the multigroup SEM analysis.
	Extended Data Fig. 1 Regression between interacting climate variables and species richness change.
	Extended Data Fig. 2 Regional predictors.
	Table 1 Predictors included in the study, along with their acronyms, units, time frame used for calculation, brief description and hypothesized relationship with species richness change.


